skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tabarsi, Benyamin T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background and Context. This innovative practice full paper describes the development and implementation of a professional development (PD) opportunity for secondary teachers to learn about ChatGPT. Incorporating generative AI techniques from Large Language Models (LLMs) such as ChatGPT into educational environments offers unprecedented opportunities and challenges. Prior research has highlighted their potential to personalize feedback, assist in lesson planning, generate educational content, and reduce teachers' workload, alongside concerns such as academic integrity and student privacy. However, the rapid adoption of LLMs since ChatGPT's public release in late 2022 has left educators, particularly at the secondary level, with a lack of clear guidance on how LLMs work and can be effectively adopted. Objective. This study aims to introduce a comprehensive, free, and vetted ChatGPT course tailored for secondary teachers, with the objective of enhancing their technological competencies in LLMs and fostering innovative teaching practices. Method. We developed a five-session interactive course on ChatGPT capabilities, limitations, prompt-engineering techniques, ethical considerations, and strategies for incorporating ChatGPT into teaching. We introduced the course to six middle and high school teachers. Our curriculum emphasized active learning through peer discussions, hands-on activities, and project-based learning. We conducted pre- and post-course focus groups to determine the effectiveness of the course and the extent to which teachers' attitudes toward the use of LLMs in schools had changed. To identify trends in knowledge and attitudes, we asked teachers to complete feedback forms at the end of each of the five sessions. We performed a thematic analysis to classify teacher quotes from focus groups' transcripts as positive, negative, and neutral and calculated the ratio of positive to negative comments in the pre- and post-focus groups. We also analyzed their feedback on each individual session. Finally, we interviewed all participants five months after course completion to understand the longer-term impacts of the course. Findings. Our participants unanimously shared that all five of the sessions provided a deeper understanding of ChatGPT, featured enough opportunities for hands-on practice, and achieved their learning objectives. Our thematic analysis underlined that teachers gained a more positive and nuanced understanding of ChatGPT after the course. This change is evidenced quantitatively by the fact that quotes with positive connotations rose from 45% to 68% of the total number of positive and negative quotes. Participants shared that in the longer term, the course improved their professional development, understanding of ChatGPT, and teaching practices. Implications. This research underscores the effectiveness of active learning in professional development settings, particularly for technological innovations in computing like LLMs. Our findings suggest that introducing teachers to LLM tools through active learning can improve their work processes and give them a thorough and accurate understanding of how these tools work. By detailing our process and providing a model for similar initiatives, our work contributes to the broader discourse on teaching professional educators about computing and integrating emerging technologies in educational and professional development settings. 
    more » « less
  2. Many students struggle with decomposition and planning despite the necessity of these skills in computing education. Hence, more tools are needed to scaffold these processes. In this paper, we present Jigsaw, a standalone visual planning tool to help students practice decomposition and planning before writing code. Jigsaw allows students to compose a solution to a new problem based on previously seen “patterns,” such as the accumulator pattern for summing values or the filter pattern for conditional input selection. Students can connect these patterns together to see how data flows between them and define a solution plan. Jigsaw’s goal is to scaffold students’ planning processes by presenting relevant patterns for a given problem. Using a within-subjects design, we evaluated Jigsaw by observing 17 undergraduate students as they planned for and implemented two programming assignments. The experimental task included Jigsaw, and the control task did not. This design aimed to understand how the tool impacted students’ planning and programming process. Subsequently, we conducted interviews with these students regarding their planning and programming experiences with and without Jigsaw. Many students explicitly mentioned they would employ Jigsaw for planning and appreciated the scaffolding it provided. Students also admired the Jigsaw’s novelty in visualizing programming problems. We conclude with our design takeaways and recommendations for future work. 
    more » « less
  3. Block-based programming environments, such as Scratch and Snap!, engage users to create programming artifacts such as games and stories, and share them in an online community. Many Snap! users start programming by reusing and modifying an example project, but encounter many barriers when searching and identifying the relevant parts of the program to learn and reuse. We present Pinpoint, a system that helps Snap! programmers understand and reuse an existing program by isolating the code responsible for specific events during program execution. Specifically, a user can record an execution of the program (including user inputs and graphical output), replay the output, and select a specific time interval where the event of interest occurred, to view code that is relevant to this event. We conducted a small-scale user study to compare users’ program comprehension experience with and without Pinpoint, and found suggestive evidence that Pinpoint helps users understand and reuse a complex program more efficiently. 
    more » « less